Relationship Between Polypharmacy and Geriatric Syndromes in Older Nursing Home Residents

🛿 Fatma Özge Kayhan Koçak, 🕲 Emin Taşkıran, 🕲 Sevnaz Şahin

Ege University Faculty of Medicine, Department of Internal Medicine, Division of Geriatrics, İzmir, Turkey

Abstract

Objective: Our aim is to determine the prevalence of polypharmacy and the relationship between polypharmacy and geriatric syndromes as well as comorbidity in older nursing home residents (NHR).

Materials and Methods: This observational and cross-sectional study was conducted with 217 adults \geq 60 years of age who had Katz index of Independence in activities of daily living score over 4 points and were institutionalized at nursing care home from March to April 2019. Polypharmacy was defined as the daily use of 5 or more medications. Geriatric syndromes include dementia, depression, urinary incontinence (UI), malnutrition, falls, mobility problems, hearing loss, vision impairment.

Results: The prevalence of polypharmacy among NHR was 61.8%. By univariate analysis, polypharmacy was associated with chronic diseases such as heart disease, chronic obstructive pulmonary disease (COPD) and diabetes mellitus, and with geriatric syndromes such as dementia, depression, UI, and mobility problems (p<0.05). In the multivariate analyses, depression [odds ratio (OR) =9.57; 95% confidence interval (CI), 2.73-33.60] and mobility problems (P= 4.88; 95% CI, 1.80-13.25) increased polypharmacy by 9.6 and 4.9-fold respectively.

Conclusion: Comorbidity and geriatric syndromes play an important role in the development of polypharmacy. Monitoring polypharmacy is often necessary as well as giving complex medication regimens for NHR.

Keywords: Activities of daily living, comorbidity, geriatric syndromes, nursing homes, polypharmacy

Introduction

Polypharmacy is becoming increasingly prevalent in older adults each year, particularly in nursing home residents (NHR). Older adults without disabilities can easily access health services to prescribe medications. The lack of assessment of patient's prior medications by each specialist is the main reason for widespread polypharmacy among NHR. Consequently, the risk of polypharmacy increases along with an increased number of hospital admissions and comorbidities.

Polypharmacy does not have a generally accepted definition (1,2). Similarly, it was defined by the World Health Organization as followed: "Polypharmacy is the concurrent use of multiple medications. Although there is no standard definition, polypharmacy is often defined as the routine use of five or more medications. This includes over-the-counter, prescription and/

or traditional and complementary medicines used by a patient" (3). The most common definition for polypharmacy is the use of five or more medications (1). According to this definition, the prevalence of polypharmacy ranged from 38.1% to 91.2% in NHR (2,4,5). The prevalence of polypharmacy varied based on numerical definitions of polypharmacy, dependence of NHR, age, and level of care (1).

Polypharmacy increases as the number of comorbidities increases (6). Polypharmacy was found to be associated with heart disease, functional decline, stroke, geriatric syndromes, including cognitive impairment, depression, poor nutrition, and falls (7–9). Polypharmacy in long-term care facilities was associated with comorbid conditions; circulatory diseases, digestive disorders, endocrine and metabolic disorders, genitourinary disorders musculoskeletal disabilities, neurological motor dysfunction,

Address for Correspondence: Fatma Özge Kayhan Koçak, Ege University Faculty of Medicine, Department of Internal Medicine, Division of Geriatrics, İzmir, Turkey

E-mail: drozgekayhankocak@gmail.com ORCID: orcid.org/0000-0002-6447-2352 Received: 16.10.2021 Accepted: 11.05.2022

Cite this article as: Kayhan Koçak FÖ, Taşkıran E, Şahin S. Relationship Between Polypharmacy and Geriatric Syndromes in Older Nursing Home Residents. Eur J Geriatr Gerontol 2022;4(3):145–151

©Copyright 2022 by the Academic Geriatrics Society / European Journal of Geriatrics and Gerontology published by Galenos Publishing House.

pulmonary diseases (5,10). As a result, polypharmacy was associated with the number of hospitalizations, length of stay, emergency department admission and all-cause hospitalization (2). Chang et al. (11) demonstrated an association between polypharmacy and mortality, regardless of chronic conditions.

Understanding the factors associated with polypharmacy is important to reduce negative outcomes of comorbidities. The relationship between polypharmacy and geriatric syndromes has been investigated generally in the community dwelling older outpatients in Turkey (12-17). In addition, research in nursing homes usually focused on the association of polypharmacy with sarcopenia in Turkey (18,19). Based on this background, the aim of this study is to determine the prevalence of polypharmacy and the relationship between polypharmacy and geriatric syndromes as well as comorbidities in older NHR.

Materials and Methods

Study population

This observational and cross-sectional study was conducted with 217 adults, \geq 60 years of age who were institutionalized at nursing care home from March to April 2019. The NHRs who had Katz index of independence in activities of daily living (KATZ-ADL) score below 5 points were excluded (20). No sampling was done because it was planned to include all eligible NHRs in this study.

Assessments

Data were collected using a structured questionnaire by researchers through face-to-face interviews with NHRs and the responsible nurses of them. Patients' data about number of chronic diseases and prescribed drugs; falls (in the last year); the presence of urinary incontinence (UI); visual impairment; hearing loss; walking disability (the use of a cane, crutches, walking frame); malnutrition; admission to the hospital in the last six months, were noted. Polypharmacy was defined as the daily use of 5 or more medications (1,21), and NHRs were separated into groups by polypharmacy status as nonpolypharmacy and polypharmacy.

Geriatric Syndromes

Functional status

To evaluate functional status, KATZ-ADL scale was used. KATZ-ADL assesses six functions, including dressing, feeding, going to toilet, continence, bathing and transferring. A score of 4 and below indicates functional impairment (20). The NHR who had KATZ-ADL score below 5 points were excluded.

Dementia

The cognitive function of all NHRs is routinely assessed by clinical judgment annually and as needed; NHRs are referred

to a neurologist as required. So, participants with a diagnosis of dementia and taking anti-dementia drugs were assessed as having dementia.

Depression

The presence of depression is assessed by the 15 item geriatric depression scale short-form in NHRs every six months; NHRs are referred to a psychiatrist as required. Participants with a diagnosis of depression and taking antidepressant treatment were assessed as having depression.

Falls

A fall was defined as "an unexpected event in which the participant comes to rest on the ground, floor, or lower level" (22). Falls history over the past 12 months has been noted.

UI

UI was defined as the unintentional passing of urine independent of the amount. Participants taking medication for UI were also included.

Visual impairment

Visual impairment was defined as wearing glasses or a decreased ability to see. We assessed visual impairment by clinical judgment.

Hearing loss

Hearing loss was defined as the use hearing aids or the inability to hear as well as an individual with normal hearing.

Mobility problems and using mobility aids

The presence of mobility problems was considered as existent if unsteady walking, difficulty in sitting and standing, difficulty in walking and moving, requiring use of mobility aids or falls were present. The use of a cane, crutches, and walking frame were noted as using mobility aids.

Malnutrition

Malnutrition is assessed by the mini nutritional assessment in NHRs every six months. Participants who received oral nutritional supplements based on a score 7 and lower MNA, were recorded as having malnutrition.

Statistics

Data analyses were performed using SPSS version 25.0 for Windows. Normality was assessed by Kolmogorov-Smirnov's test. Normally distributed quantitative variables were expressed by mean \pm standard deviations, and those without normal distribution are expressed by median and minimum-maximum values. Quantitative variables without normal distribution were expressed by mean \pm standard deviations in the table if they have statistical significance. Qualitative variables were expressed as frequency and percentages. Chi-square (X²) test and Fisher's Exact test were used in the analysis of qualitative variables. The t-test and Mann-Whitney U test were used in the analysis of quantitative variables where available. Multiple logistic regression analysis was performed for multivariate analysis. Logistic Regression model was performed for variables which showed significant relationships with univariate analysis. A value of p<0.05 was accepted as statistically significant.

Results

Of the NHRs, 54 (24.9%) were in the 60–69 age group, 85 (39.2%) in the 70–79 age group and 78 (35.9%) in the 80 and over age group. Median (min-max) of age was 76 (61–110). Median (min-max) of medication number of all NHRs was 6 (0–17), 3 (0–4) in non-polypharmacy group, 7 (5–17) in polypharmacy group. Prevalence of polypharmacy was 61.8% in this study. The polypharmacy group had a higher hospital admission rate in last 6 months and a higher comorbidity prevalence than the non-polypharmacy group. There was no relationship between polypharmacy and other socio-demographic characteristics. Descriptive of the groups are shown in Table 1.

Of the NHRs, 38 (17.5%) had at least one chronic disease, 43 (19.8%) had two chronic diseases and 136 (62.7%) had three or more chronic diseases. The most common diseases were hypertension (58.5%), cardiovascular system diseases (27.2%) and benign prostatic hyperplasia (22.6%), followed by chronic obstructive pulmonary disease (COPD) and diabetes mellitus (DM) (19.4%). Falls, malnutrition, hearing loss, and vision impairment were not associated with polypharmacy. Comorbidity status according to polypharmacy is given in Table 2.

Thirteen (6%) participants took one drug, fifty-nine (27.2%) participants took two-four drugs, hundred and five (48.4%) participants took five-nine drugs, and twenty-nine (13.3%) participants ten or more drugs. The most used drugs in both groups were angiotensin-converting enzyme inhibitor&tangiotensin-2 receptor blocker, antiplatelet drugs, and diuretics. The most used drugs in NH are given in Table 3.

All chronic diseases, except geriatric syndromes, were significantly associated with polypharmacy in univariate and multivariate analysis. Depression was found to be a better independent predictor of polypharmacy in NHRs compared with other co-morbidities (odds ratio: 9.57; 95% confidence interval: 2.73-33.6; p<0.001) (Table 4). However, the depression had wide confidence intervals. In terms of geriatric syndromes, dementia and UI were not associated with polypharmacy in the multivariate analysis (Table 4).

Discussion

In this study, we aimed to determined the relationship between polypharmacy and comorbidities, especially geriatric

syndromes, in NHR without functional impairment. Prevalence of polypharmacy was 61.8% and polypharmacy was increased with depression and mobility problems.

There was a significant difference between the polypharmacy group and non-polypharmacy group in scores of Katz ADL. A cross-sectional, observational study conducted by 1002 community-dwelling older women showed that the use of five or more medications resulted in risk of decreasing instrumental ADL (IADL) score (23). A similar outcome was found by combining ADL and IADL (24). Furthermore, studies have found the negative association between ADL score and polypharmacy in chronic diseases (25-27). Also, there were a few studies that have not demonstrated the relationship between polypharmacy and functional decline in NH (28,29). Consequently, health professionals should be aware of the association between polypharmacy and functional decline.

Polypharmacy could be an indicator of an individual's underlying medical condition. There is heterogeneity among

Table 1. Descriptive statistics of study participants				
	Non polypharmacy (n=83, 38.2%)	Polypharmacy (n=134, 61.8%)	р	
Age (years)	74 (63-110)	77 (61-95)	0.19	
Gender			0.21	
M (n, %)	49 (59%)	69 (51.5%)		
F (n, %)	34 (41%)	65 (48.5%)		
Education level			0.18	
Illiterate (n, %)	4 (4.8%)	15 (11.2%)		
Literate (n, %)	2 (2.4%)	7 (5.2%)		
1 to 11 years (n, %)	42 (50.6%)	63 (47%)		
12 years and above (n, %)	10 (12.1%)	8 (6%)		
Missing	25 (30.1%)	41 (30.6%)]	
Marital status (n, %)			0.44	
Single	17 (20.7%)	28 (20.7%)		
Married	9 (11%)	6 (4.4%)		
Divorced or widow	56 (67.1%)	97 (72.6%)]	
Missing	1 (1.2%)	3 (2.2%)]	
Length of stay in institution (n, %)*			0.48	
0-6 months	4 (4.8%)	8 (5.97%)		
Above 6 months	79 (95.2%)	125 (93.3%)	1	
Missing		1 (0.75%)	1	
Hospital admission in the last 6 months (mean ± SD)	1.22±1.55	2.80±3.13	<0.001	
Comorbidities (mean ± SD)	1.87±1.23	3.87 <u>+</u> 1.45	<0.001	
*Fisher's Exact test, SD: Stan statistical significance	dard deviation, the bol	d values indicate the	number for	

 Table 2. Comorbidities and geriatric syndromes according to polypharmacy status

polypharmacy status	polypharmacy status				
Comorbidities	Non polypharmacy (n=83, 38.2%)	Polypharmacy (n=134, 61.8%)	р		
KATZ score (median, min-max)	6 (5-6)	6 (5-6)	0.017		
Diabetes mellitus	8 (9.6%)	34 (25.4%)	0.004		
Arrhythmia	2 (2.4%)	20 (14.9%)	0.003		
Cardiovascular disease	9 (10.8%)	50 (37.3%)	<0.001		
Heart failure	1 (1.2%)	15 (11.2%)	0.006		
Malignancy*	1 (1.2%)	9 (6.7%)	0.054		
COPD	6 (7.2%)	36 (26.9%)	<0.001		
Hypertension	37 (44.6%)	90 (67.2%)	0.001		
Benign prostatic hyperplasia	13 (15.7%)	36 (26.9%)	0.055		
Thyroid disease	4 (4.8%)	28 (20.9%)	0.001		
Peripheral vascular disease	1 (1.2%)	14 (10.4%)	0.01		
Parkinson disease	3 (3.6%)	6 (4.5%)	0.76		
Geriatric syndromes					
Dementia	4 (4.8%)	19 (14.2%)	0.03		
Depression	4 (4.8%)	33 (24.6%)	<0.001		
Urinary incontinence	5 (6%)	22 (16.4%)	0.02		
Malnutrition*	0	3 (2.2%)	0.23		
Falls*	5 (6%)	7 (5.2%)	0.51		
Mobility problems	9 (10.8%)	42 (31.3%)	0.01		
Using mobility aids	10 (12%)	39 (29.1%)	0.003		
Hearing loss	12 (14.5%)	25 (18.7%)	0.42		
Vision impairment	21 (25.3%)	35 (26.1%)	0.89		
COPD: Chronic obstructive pu	Imonary disease, the bo	ld values indicate the	number for		

statistical significance, *Fisher's Exact test

Table 3. The most commonly used drugs in nursing homes

rable 5. The most commonly used drugs in nursing nomes				
Drug type	Non polypharmacy (n=83, 38.2%)	Polypharmacy (n=134, 61.8%)	р	
PPI	16 (19.3%)	60 (44.8%)	0.00	
Antiplatelet drugs	23 (27.7%)	72 (53.7%)	0.00	
ACE inhibitor or ARB	22 (26.5%)	71 (53%)	0.00	
Diuretic	24 (28.9%)	65 (48.5%)	0.04	
Beta blocker	13 (15.7%)	51 (38.1%)	0.00	
Calcium channel blocker	10 (12%)	32 (23.9%)	0.032	
Vasodilator	6 (7.2%)	33 (24.6%)	0.01	
Inhaler beta mimetic	5 (6%)	36 (26.9%)	0.00	
SSRI/SNRI	5 (6%)	34 (25.4%)	0.00	
Vitamin supplement	5 (6.1%)	38 (28.4%)	0.00	
Anticholinergic	6 (7.2%)	33 (24.6%)	0.001	
Alpha blocker	10 (12%)	29 (21.6%)	0.074	

ACE: Angiotensin-converting enzyme, ARB: Angiotensin II receptor blocker, SNRI: Serotonin and norepinephrine reuptake inhibitors, SSRI: Selective serotonin reuptake inhibitors, PPI: Proton pump inhibitors studies investigating the relationship between polypharmacy and comorbidities (30). Like our study, Gocer et al. (31) found that the prevalence of polypharmacy was higher in NHR with hypertension, heart disease and COPD. In a systematic review, cognitive impairment, hypertension, and DM were the most prevalent comorbidities in long-term care residents (5). Similarly, prevalence of polypharmacy has increased with an increase in the number of chronic diseases among the community dwelling older adults (32). In a recent cross-sectional retrospective study. polypharmacy was more prevalent in geriatric outpatients with hypertension, DM, and COPD (33). As for the coexistence of heart disease, DM, COPD, the number of medications inevitably increase. Also, the use of anticholinergic drugs strengthens the association between polypharmacy and comorbidities (32). If the medication was continued although the symptoms had resolved, negative outcomes occur (34,35). As a result, medications used by older adults should be evaluated in accordance with international or national guidelines (15,36-39).

The presence of a geriatric syndrome is known to increase the risk of polypharmacy. In our study, by univariate analysis, geriatric syndromes such as dementia, depression, UI, and mobility problems were significantly associated with polypharmacy. In the multivariate analyses, depression and mobility problems were significantly associated with polypharmacy and presences of these diseases increase polypharmacy by 9.6 and 4.8-fold respectively. The Shelter study found that polypharmacy was increased by 2-fold with depression (4). Similarly, depression was independently related to presence of polypharmacy and the use of potentially inappropriate medication in geriatric outpatients (12,14). A multicenter study based on the survey of health and ageing in Europe found that polypharmacy was associated with depression, lack of finance, lower ADL score (26). On the contrary to our findings, Küçükdağlı (14) found that UI in geriatric outpatients was independently related to polypharmacy in univariate and multivariate analysis. As far as dementia is concerned, there was a similar outcome in geriatric outpatients to our study (16). Our study conducted in NHRs with a KATZ score 5 and over. As a result, the study participants were functional and potentially less frail. Polypharmacy could have been related to a broader spectrum of geriatric syndromes, if the study population had been more functionally dependent.

Polypharmacy has a negative impact on conditions affecting mobility, such as falls and functional decline (40-42). We showed that polypharmacy was associated with mobility problems, not falls. A recent cross-sectional study carried out geriatric outpatients found that polypharmacy was independently associated with poor physical performance rather than falls (33). Several studies have shown a relationship between polypharmacy and falls (2). Izza et al. (43) showed that the odds of falling increased by 1.058 times for every additional drug prescribed after adjusting for gender, age, and dementia.

Variables	Polypharmacy (>5 drugs)					
	Univariate models		Multivariate model			
	OR	95% Cl	p	OR	95% Cl	р
CVD	4.89	2.25-10.62	0.000	5.71	2.22-14.66	0.000
Hypertension	2.54	1.45-4.47	0.001	2.63	1.25-5.54	0.011
COPD	4.71	1.89-11.76	0.001	7.04	2.29-21.60	0,001
Depression	6.45	2.19-18.98	0.001	9.57	2.73-33.60	0.000
Mobility problems	3.75	1.72-8.21	0.001	4.88	1.80-13.25	0.002
Thyroid disease	5.22	1.76-15.48	0.003	6.53	1.83-23.31	0.004
Diabetes mellitus	3.19	1.39-7.28	0.006	5.58	1.96-15.84	0.001
Arrhythmia	7.11	1.61-31.25	0.009	7.02	1.31-37.47	0.023
UI	3.06	1.11-8.44	0.03	2.06	0.58-7.28	0.26
Dementia	3.26	1.07-9.96	0.04	3.28	0.82-13.18	0.094

Table 4. Logistic regression analysis where risk of polypharmacy was taken as a dependent variable

CVD: Cardiovascular disease, UI: Urinary incontinence, COPD: Chronic obstructive pulmonary disease, CI: Confidence interval

A study conducted to community-dwelling adults aged 55 years and over with a fall history indicated that the use of at least five daily prescribed molecules was associated with impaired timedup and go test after adjusting for the number of comorbidities (44). The presence of the polypharmacy also is a significant risk factor for potentially inappropriate medication use. Thus, it poses a risk of geriatric syndromes (15). Some medications can increase the risk of geriatric syndrome because of their anticholinergic effects, sedative properties or by causing adverse drug reaction (45,46).

In the literature, the most used drugs in NHs were for heart disease medications (31,47). The most prevalent medications taken by all long-term care residents were gastrointestinal agent, diuretic and analgesic/antipyretic drugs in a systematic review (5). In a study conducted by 1843 NHR, they found that rate of use of cardiovascular medications (including antiplatelets, beta blockers, angiotensin-converting enzyme inhibitors, calcium channel blockers, and statins) was decreased following institutionalization over a period of one year (48). Also, in this study, the most common comorbidity was heart disease, as a result, the most frequently used drug group was cardiovascular medications.

Study Limitations

To our knowledge, this is the first study that has recently focused on the relationship between geriatric syndromes and polypharmacy in Turkish NHs. We realized that geriatric syndrome awareness was ensured through regular screening in NH. A relevant limitation of the study was number of NHR. Also, by the reason of conducted in one nursing home, the results cannot be generalized to all the NHR. Additionally, this study does not help to determine cause and effect for certain because of having cross sectional type. NHR were not evaluated with the comprehensive geriatric assessment, previously diagnosed health conditions were noted. Consequently, prevalence of geriatric syndromes can be even higher. Also, visual and hearing loss were assessed subjectively. Therefore, the associations between polypharmacy and visual and hearing loss might not be as well determined.

Conclusion

Comorbidity and geriatric syndromes play a significant role in the prevalence of polypharmacy. Assessment of polypharmacy is necessary during the administration of complex medication regimens for NHR. There was a statistical difference in Katz score between polypharmacy group and non-polypharmacy groups in this study, although it was conducted among individuals who were described independent with Katz ADL. This is the first study evaluating the relationship between polypharmacy and geriatric syndromes in NHRs in Turkey. Given the scarcity of the studies on this subject and difficulty of getting permission for research in Turkish NHs, we believe that this study is valuable. Polypharmacy is common in NHs and is associated with geriatric syndromes. We believe that prevalence of the polypharmacy will increase even further as evaluated through a comprehensive geriatric assessment. With prospective studies, the effect of deprescribing on geriatric syndromes can be investigated. Also, the studies investigating the prescription cascade are needed.

Ethics

Ethics Committee Approval: The study was approved by the Ege University Human Research Ethics Committee (18-11T/16), and taken approval from the Ministry of Family, Labour, and Social Services of The Republic.

Informed Consent: Informed consent was obtained from all participants included in the study. The study was performed in line with the principles of the Declaration of Helsinki.

Peer-review: Externally peer-reviewed.

Authorship Contributions

Surgical and Medical Practices: F.Ö.K.K., E.T. Concept: F.Ö.K.K., E.T., S.Ş., Design: F.Ö.K.K., E.T., Data Collection or Processing: F.Ö.K.K., E.T., Analysis or Interpretation: F.Ö.K.K., E.T., Literature Search: F.Ö.K.K., E.T., Writing: F.Ö.K.K., E.T.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

References

- 1. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatrics 2017;17:230.
- Pazan F, Wehling M. Polypharmacy in older adults: a narrative review of definitions, epidemiology and consequences. Eur J Geriatr Med 2021;12:443-452.
- World Health Organization (WHO) (2019) Medication Safety in Polypharmacy (WHO/UHC/SDS/2019.11). [Internet]. 2020 [cited 2022 Mar 13]. Available from: https://apps.who.int/iris/ bitst ream/handl e/10665 /32545 4/WHO-UHC-SDS-2019.11-eng. pdf?ua=
- 4. Onder G, Liperoti R, Fialova D, Topinkova E, Tosato M, Danese P, Gallo PF, Carpenter I, Finne-Soveri H, Gindin J, Bernabei R, Landi F; SHELTER Project. Polypharmacy in Nursing Home in Europe: Results From the SHELTER Study. J Gerontol A Biol Sci Med Sci 2012;67A:698-704.
- Jokanovic N, Tan ECK, Dooley MJ, Kirkpatrick CM, Bell JS. Prevalence and Factors Associated With Polypharmacy in Long-Term Care Facilities: A Systematic Review. J Am Med Dir Assoc 2015;16:535.e1-12.
- Aubert CE, Streit S, Da Costa BR, Collet TH, Cornuz J, Gaspoz JM, Bauer D, Aujesky D, Rodondi N. Polypharmacy and specific comorbidities in university primary care settings. Eur J Intern Med 2016;35:35-42.
- Tamura BK, Bell CL, Inaba M, Masaki KH. Factors Associated With Polypharmacy in Nursing Home Residents. Clin Geriatr Med 2012;28:199– 216.
- Shah BM, Hajjar ER. Polypharmacy, Adverse Drug Reactions, and Geriatric Syndromes. Clinics in Geriatric Med 2012;28:173-186.
- 9. Maher RL, Hanlon J, Hajjar ER. Clinical consequences of polypharmacy in elderly. Expert Opin Drug Saf 2014;13:57-65.
- Bronskill SE, Gill SS, Paterson JM, Bell CM, Anderson GM, Rochon PA. Exploring Variation in Rates of Polypharmacy Across Long Term Care Homes. J Am Med Dir Assoc 2012;13:309.e15-21.
- Chang TI, Park H, Kim DW, Jeon EK, Rhee CM, Kalantar-Zadeh K, Kang EW, Kang SW, Han SH. Polypharmacy, hospitalization, and mortality risk: a nationwide cohort study. Sci Rep 2020;10:18964.
- 12. Yuruyen M, Yavuzer H, Demirdag F, Kara Z, Cengiz M, Yavuzer S, Doventas A, Erdincler DS, Beger T. Is Depression a Predictive Factor for Polypharmacy in Elderly? Bulletin of Clinical Psychopharmacology 2016;26:374-381.
- Efe M, Saraç ZF, Savaş S, Kılavuz A, Akçiçek SF. Sarcopenia prevalence and the quality of life in older adults: A study from Turkey's east. Ege Journal of Medicine 2021;60(Suppl):52-59.
- 14. Küçükdağlı P. Polypharmacy and Related Factors in Geriatric Outpatients Eur J Geriatr Gerontol 2019;1:56-60.
- Kucukdagli P, Bahat G, Bay I, Kilic C, Oren MM, Turkmen BO, Karan MA. The relationship between common geriatric syndromes and potentially inappropriate medication use among older adults. Aging Clin Exp Res 2020;32:681-687.
- 16. Erbas Sacar D. Association Between Dementia and Common Geriatric Syndromes. Eur J Geriatr Gerontol 2020;2:71-76.

- Sengul Aycicek G, Arik G, Kizilarslanoglu MC, Sumer F, Pala OO, Can B, et al. Association of polypharmacy with postural instability and impaired balance in community-dwelling older adults in Turkey. Marmara Med J 2021;34:12-17.
- Tasar PT, Sahin S, Karaman E, Ulusoy MG, Duman S, Berdeli A, Akcicek F. Prevalence and risk factors of sarcopenia in elderly nursing home residents. European Geriatric Medicine 2015;6:214–219.
- 19. Yalcin A, Aras S, Atmis V, Cengiz OK, Cinar E, Atli T, Varli M. Sarcopenia and mortality in older people living in a nursing home in Turkey. Geriatr Gerontol Int 2017;17:1118-1124.
- 20. Katz S. Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living. J Am Geriatr Soc 1983;31:721-727.
- 21. Ferner RE, Aronson JK. Communicating information about drug safety. BMJ 2006;333:143-145.
- 22. Lamb SE, JÅ, rstad-Stein EC, Hauer K, Becker C; Prevention of Falls Network Europe and Outcomes Consensus Group. Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus. J Am Geriatr Soc 2005;53:1618-1622.
- Crentsil V, Ricks MO, Xue QL, Fried LP. A pharmacoepidemiologic study of community-dwelling, disabled older women: Factors associated with medication use. Am J Geriatr Pharmacother 2010;8:215-224.
- 24. Connolly D, Garvey J, McKee G. Factors associated with ADL/IADL disability in community dwelling older adults in the Irish longitudinal study on ageing (TILDA). Disabil Rehabil 2017;39:809-816.
- Goyal P, Bryan J, Kneifati-Hayek J, Sterling MR, Banerjee S, Maurer MS, Lachs MS, Safford MM. Association Between Functional Impairment and Medication Burden in Adults with Heart Failure. J Am Geriatr Soc 2019;67:284–291.
- Mohamed MR, Ramsdale E, Loh KP, Xu H, Patil A, Gilmore N, Obrecht S, Wells M, Nightingale G, Juba KM, Faller B, Onitilo A, Bradley T, Culakova E, Holmes H, Mohile SG. Association of Polypharmacy and Potentially Inappropriate Medications With Physical Functional Impairments in Older Adults With Cancer. J Nat Compr Canc Netw 2021;19:267-274.
- Bahat G, Tufan F, Bahat Z, Tufan A, Aydin Y, Akpinar TS, Nadir S, Erten N, Karan MA. Comorbidities, polypharmacy, functionality and nutritional status in Turkish community-dwelling female elderly. Aging Clin Exp Res 2014;26:255–259.
- Wilson NM, Hilmer SN, March LM, Cameron ID, Lord SR, Seibel MJ, Sambrook PN. Associations between drug burden index and physical function in older people in residential aged care facilities. Age Ageing 2010;39:503-507.
- Vetrano DL, Villani ER, Grande G, Giovannini S, Cipriani MC, Manes-Gravina E, Bernabei R, Onder G. Association of Polypharmacy With 1-Year Trajectories of Cognitive and Physical Function in Nursing Home Residents: Results From a Multicenter European Study. J Am Med Dir Assoc 2018;19:710-713.
- Fried TR, O'Leary J, Towle V, Goldstein MK, Trentalange M, Martin DK. Health Outcomes Associated with Polypharmacy in Community-Dwelling Older Adults: A Systematic Review. J Am Geriatr Soc 2014;62:2261-2272.
- 31. Gocer S, Gunay O, Polat T, Ulutabanca R, Sonkaya Z. Polypharmacy and associated factors in people living in a nursing home in Kayseri Turkey. Med Sciences 2017;6:646-652.
- 32. Masnoon N, Kalisch Ellett L, Shakib S, Caughey GE. Predictors of Mortality in the Older Population: The Role of Polypharmacy and Other Medication and Chronic Disease-Related Factors. Drugs Aging 2020;37:767-776.
- Ozkok S, Aydin CO, Sacar DE, Catikkas NM, Erdogan T, Kilic C, Karan MA, Bahat G. Associations between polypharmacy and physical performance measures in older adults. Arch Gerontol Geriatr 2022;98:104553.
- 34. Bahat G, Bay I, Tufan A, Tufan F, Kilic C, Karan MA. Prevalence of potentially inappropriate prescribing among older adults: A comparison of the Beers 2012 and Screening Tool of Older Person's Prescriptions criteria version 2. Geriatr Gerontol Int 2017;17:1245-1251.

- Krishnaswami A, Steinman MA, Goyal P, Zullo AR, Anderson TS, Birtcher KK, Goodlin SJ, Maurer MS, Alexander KP, Rich MW, Tjia J; Geriatric Cardiology Section Leadership Council, American College of Cardiology. Deprescribing in Older Adults With Cardiovascular Disease. J Am Coll Cardiol 2019;73:2584-2595.
- Mangin D, Bahat G, Golomb BA, Mallery LH, Moorhouse P, Onder G, Petrovic M, Garfinkel D. International Group for Reducing Inappropriate Medication Use & Polypharmacy (IGRIMUP): Position Statement and 10 Recommendations for Action. Drugs Aging 2018;35:575-587.
- 37. Bahat G, Ilhan B, Erdogan T, Oren MM, Karan MA, Burkhardt H, Denkinger M, Garfinkel D, Cruz-Jentoft AJ, Morrissey Y, Onder G, Pazan F, Tommelein E, Topinkova E, van der Velde N, Petrovic M. International Validation of the Turkish Inappropriate Medication Use in the Elderly (TIME) Criteria Set: A Delphi Panel Study. Drugs Aging 2021;38:513-521.
- 38. Bahat G, İlhan B, Erdoğan T, Halil M, Savaş S, Ülger Z, Akyüz F, Bilge AK, Çakır S, Demirkan K, Erelel M, Güler K, Hanağası H, İzgi B, Kadıoğlu A, Karan A, Baral Kulaksızoğlu I, Mert A, Öztürk S, Satman İ, Sever MŞ, Tükek T, Üresin Y, Yalçın Ö, Yeşilot N, Ören MM, Karan MA. Presenting Turkish Inappropriate Medication Use in the Elderly (TIME) Criteria Set in Turkish. Eur J Geriatr Gerontol 2021;3:40-100.
- 39. Bahat G, Ilhan B, Erdogan T, Halil M, Savas S, Ulger Z, Akyuz F, Bilge AK, Cakir S, Demirkan K, Erelel M, Guler K, Hanagasi H, Izgi B, Kadioglu A, Karan A, Kulaksizoglu IB, Mert A, Ozturk S, Satman I, Sever MS, Tukek T, Uresin Y, Yalcin O, Yesilot N, Oren MM, Karan MA. Turkish inappropriate medication use in the elderly (TIME) criteria to improve prescribing in older adults: TIME-to-STOP/TIME-to-START. Eur Geriatr Med 2020;11:491-498.
- Peron EP, Gray SL, Hanlon JT. Medication Use and Functional Status Decline in Older Adults: A Narrative Review. Am J Geriatr Pharmacother 2011;9:378-391.

- Zia A, Kamaruzzaman SB, Tan MP. Polypharmacy and falls in older people: Balancing evidence-based medicine against falls risk. Postgrad Med 2015;127:330-337.
- 42. Ali MU, Sherifali D, Fitzpatrick-Lewis D, Kenny M, Liu A, Lamarche L, Mangin D, Raina P. Polypharmacy and mobility outcomes. Mech Ageing Dev 2020;192:111356.
- 43. Izza MAD, Lunt E, Gordon AL, Gladman JRF, Armstrong S, Logan P. Polypharmacy, benzodiazepines, and antidepressants, but not antipsychotics, are associated with increased falls risk in UK care home residents: a prospective multi-centre study. Eur Geriatr Med 2020;11:1043-1050.
- Langeard A, Pothier K, Morello R, Lelong-Boulouard V, Lescure P, Bocca ML, Marcelli C, Descatoire P, Chavoix C. Polypharmacy Cut-Off for Gait and Cognitive Impairments. Front Pharmacol 2016;7:296.
- Pana A, Sourtzi P, Kalokairinou A, Velonaki VS. Sarcopenia and polypharmacy among older adults: A scoping review of the literature. Arch Gerontol Geriatr 2022;98:104520.
- George CJ, Verghese J. Motoric Cognitive Risk Syndrome in Polypharmacy. J Am Geriatr Soc 2020;68:1072-1077.
- 47. Altiparmak S, Altiparmak O. Drug-using behaviors of the elderly living in nursing homes and community-dwellings in Manisa, Turkey. Arch Gerontol Geriatr 2012;54:e242-e248.
- 48. Onder G, Vetrano DL, Villani ER, Carfi A, Io Monaco MR, Cipriani MC, Manes Gravina E, Denkinger M, Pagano F, van der Roest HG, Bernabei R. Deprescribing in Nursing Home Residents on Polypharmacy: Incidence and Associated Factors. J Am Med Dir Assoc 2019;20:1116-1120.